3. 汇聚机房BD损坏
汇聚层机房在大型建筑物中是最基本的信息机房之一,它一旦发生故障,可能会导致FD至汇聚机房、汇聚机房至核心机房之间的信息传输全部中断或部分中断。
在图6中,如果在常规拓扑结构下BD2损毁,将导致BD2所属的12个弱电间(FD13~FD24)信息传输中断。比较理想的解决方法是采用冗余方案:12个弱电间分设2根光缆,途径两个桥架,敷设到两个汇聚机房中(参见图3、图5和图6)。
作为一间机房,还需要从光缆的外部保护角度分析光缆在受到外力是可能损伤的程度,我们所希望的是尽量保持光缆不被破坏。为此,可以例举几种保护光缆的方法:
使用全封闭金属桥架(带耐火内胆,即耐火桥架)。全封闭金属桥架可以全方位的保护光缆不受外力的打击,耐火内胆可以有效的防止因外力造成的损坏所引发的火焰和高温破坏光缆;
使用耐火光缆。在灾难来临时,往往会伴随着火灾,这是需要考虑的问题就引伸到火场附近、没有被火焰吞噬的网络设备和服务器是否还能够进行工作的问题。对于不重要的机房而言,火灾发生的同时,外部供电系统将立即切断,而UPS供电则根据业主方的要求分别有切断和不切断两种方案。对于重要的服务器而言,它将工作到“生命”的最后一刻。另外,机房内的灾备机柜内也用于保护服务器和网络设备,但它对外的信息传输和供电(也可以使用机柜内的内藏UPS供电)则依然暴露在火场中。如果要求保证这些没有被烧着的服务器和网络设备接续工作,则需要使用耐火光缆。中国的耐火光缆可以在750℃的火场中持续工作1.5小时,欧洲的耐火光缆可以在850℃的火场中持续工作3小时。如果选用耐火光缆,则可以防范因外部损坏导致局部火灾时仍然能够保持信息传输。当然如果采用耐火光缆,则有必要同步引入耐火电缆(电源线);
水平主干桥架不采用架空,而是安装在墙边(并非隔断墙)的地面附近,因为万一发生爆炸时,架空桥架将首先损坏,而墙边地面附近则是受影响最小的地方。当然,这里所指的墙不是靠近走廊的玻璃墙和石膏板墙,而是比较坚固的墙。这与防地震的原理是相近的。
在汇聚机房中往往会有垂直进线桥架,对于这部分桥架同样一个选择全封闭耐火桥架。只是这些桥架应该固定在坚固的墙面上,并延伸到地面附近与水平主干桥架连接。如果在机房内的墙面上有突出的柱子,则能将桥架隐藏在柱子旁的拐角内是比较理想的。
4. 核心机房CD损坏
核心机房CD是整栋建筑的信息传输中枢。就传统的传输结构来说,如果它因局部的不可抗力被毁(指人为灾难,如爆炸、局部火灾等等。地震、风灾等可能导致整个建筑被毁的灾难不在讨论之列),同时引发部分机房起火。如果起火的机房是网络设备和主配线架所在的区域,那就有可能导致整栋建筑的信息传输全部中断,即使有灾难备份机房也难以发挥作用。可以说从信息灾备角度来看,核心主机房(主配线架所在的机房)成为该建筑物信息系统中的“命门”。
基于图1拓扑结构的综合布线系统的冗余结构依然可以参考图6,光缆的外部保护也可以参考汇聚机房BD中的外部保护方式。但还需要考虑另外两个问题:
核心机房的网络区(主配线架和网络交换机所在的区域)往往只有一个,如果它一旦收到不可抗力的损毁,则通常会造成电源系统断电,导致这个防火区域内停电,这时如果外部灾备机房与该建筑物连接的光缆及网络设备也在主干区域内,那外部灾备机房形同虚设。为了避免以上问题,需根据图2的思路,在核心机房(一般式信息机房)内寻找第2个防火分区(通常每800㎡为一个防火分区),并在第2个防火分区中再设一套冗余的网络设备和主配线架。
万一网络区彻底毁损,上述的方法将全部失效。这时,可以考虑将部分汇聚机房作为核心机房的备份,使用光缆直接连接到各进线间,形成更为复杂的冗余拓扑结构(参加图7)。
当核心机房CD被损毁时,火势可能会蔓延到机房以外。这时,邻近的防火分区内也会起火,当某一汇聚机房BD在通往进线间的通路经过已经起火的防火分区时,如果所用光缆为普通的阻燃/低烟无卤光缆,则该光缆会被火焰烧毁,导致相应汇聚机房BD至进线间的光缆损坏,造成即使核心机房CD损毁仍然无法让汇聚机房BD通过光缆连接到进线间。随着防火缆线技术的发展,市场上已经出现了阻燃耐火/低烟无卤光缆,它可以在850℃的火场中持续传输时间可以达到3个小时,其工作温度远高于CMP所能达到的工作温度,而它的阻燃/低烟无卤特性,有保证了火势不会顺着光缆蔓延、火场中烟雾少和毒气少、利于火场中的人们逃生的特性,可以说它兼得了高阻燃缆线和低烟无卤缆线的双重优势,并有超越这两大类缆线的优越之处。至于耐火光缆的温度为850℃,则根据2008年颁布的《民用建筑电气设计规范》(JGJ 16-2008),民用火灾的温度通常小于1000℃,这样的耐火光缆可以保证在经过起火的防火分区时仍然能够正常工作。
5. 进线间损毁
在图一所示的结构中,进线间有两个,而且不在同一个地方,从灾备角度看,除非整栋建筑全部倒塌,否则两个进线间同时损毁的概率是非常低的,几乎可以不用考虑。
从图1演变到图7,利用了各种方法,其中包含外部灾备机房、光缆冗余、全封闭金属桥架、耐火桥架、耐火光缆、安装位置、双防火分区等等,借助于多重保护的方法使尽量多的信息传输依然能够保持正常的工作状态。这是灾备综合布线系统与常规冗余综合布线系统所不同的所在。
对于一个实用的灾备布线系统,不是说越复杂越好,而是根据工程的实际情况,确定发生问题的几个可能性,针对这些可能性进行有效的灾备设计,以求具有实效性,而不是追求面面俱到。
本文章的一系列解决方案是在一个业主问了一个问题:“万一我的主机房被炸时,怎样保证信息传输?”后,逐渐形成的。由于目前的各种标准中都没有这方面的描述,所以本文仅仅只希望能够发挥“抛砖引玉”的作用,为今后完善的灾备综合布线系统做出铺垫,希望在不久的未来,灾备综合布线系统能够进入标准,像冗余布线系统一样,成为有据可查的、规范化的综合布线系统。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
作者
相关推荐
-
揭开灾备真相——那些年我们见过的灾备术语
作为数据保护的最后一道屏障,灾备系统的重要性不言而喻。IT圈好像一夜之间都在说灾备,那么到底什么是灾备?为什么灾备如此重要?未来发展趋势如何?本系列文章带你认清灾备真相。
-
年营收平均环比增长200%+ 英方是如何做到的?
英方自2014年全面开拓灾备市场以来,至2017年每年的营业收入平均环比持续增长超过200%。那么,是什么造就了如此高的业务发展速度?
-
存储极客:大话“双十一”与经济适用型双活
有了存储复制/双活之后,在一些关键应用中,同时进行数据库层面的逻辑或者物理复制保护也是有必要的。此外,为了保证跨数据中心双活存储的自动切换和避免脑裂,像第三站点仲裁这样的技术EMC、戴尔等厂商也是支持的。
-
Fujitsu基于Ceph推出Eternus CD10000
Fujitsu最新推出基于Ceph的Eternus CD10000,该产品加入了优化的纠删码、容量侧重和性能侧重的存储节点、内部备份以及为灾备设计的分离式集群等特色。